Thursday, 12 March 2015

Soal dan Jawaban Kuat Arus Listrik

Soal dan Jawaban Kuat Arus Listrik

  1. Jika kuat arus dalam sepotong kawat penghantar = 2 ampere, berapakah banyaknya muatan listrik yang mengalir melalui penampang kawat penghantar tersebut selama 1 menit ?
Penyelesaian
Diketahui :
I = 2 ampere
t = 1 menit = 60 detik
Ditanya:
q = ......?
Jawab:
q = I. t
q = 2 A x 60 detik
q = 120 coulomb

  1. Jika sebuah kawat penghantar listrik dialiri muatan listrik sebesar 360 coulomb dalam waktu 1 menit, tentukan kuat arus listrik yang melintasi kawat penghantar tersebut ! 
Penyelesaian
Diketahui :
q = 360 coulomb
t = 1 menit = 60 detik
Ditanya:
I = ......?
Jawab:
I = q/t

I = 360/60 =  6 A

Konsep Dasar Arus Listrik

Konsep Dasar Arus Listrik

Dalam pembahasan listrik statik dipelajari tentang partikel yang bermuatan listrik di dalam atom, yaitu elektron dan proton. Elektron adalah pembawa muatan listrik negatif yang dapat digunakan untuk menjelaskan terjadinya arus listrik dan proton pembawa muatan positif.

Listrik dinamis adalah ilmu yang mempelajari tentang listrik yang mengalir. Pada listrik statik, muatan listrik yang telah dipelajari itu pada umumnya tidak mengalir sama sekali atau kalau ada juga aliran, maka aliran tersebut berlangsung sangat singkat dan sangat kecil sehingga tak dapat ditunjukkan dengan alat pengukur arus.

Seperti yang telah kita ketahui bahwa elektron-elektron itu adalah pambawa muatan negatif. Di dalam suatu penghantar electron-elektron dapat berpindah dengan mudah, sedangkan di dalam suatu isolator elektron-elektron tersebut sukar berpindah.

Pengertian Arus Listrik, Kuat Arus Listrik

Pengertian Arus Listrik, Kuat Arus Listrik
 
Pengertian Arus Listrik
adalah mengalirnya electron secara kontinyu pada konduktor akibat perbedaan jumlah electron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere.

1 ampere arus adalah mengalirnya electron sebanyak 628x1016 atau sama dengan 1 Coulumb per detik meliwati suatu penampang konduktor.

Pengertian Kuat Arus Listrik
Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu.
 
Difinisi : Amper adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik.

Pengertian Generator Arus Searah, Accumulator

Pengertian Generator Arus Searah, Accumulator

Pengertian Generator arus searah
Adalah mesin pengubah energi mekanik menjadi energi listrik, sedangkan penggerak dari generator disebut prime mover yang dapat berbentuk turbin air, uap, mesin diesel dll.

 
Prinsip kerjanya adalah berdasarkan hukum Faraday dimana konduktor memotong medan magnit dan emf atau induksi akan timbul beda tegangan dan adanya komutator yang dipasang pada sumbu generator maka pada terminal generator akan terjadi tegangan searah.

Pengertian Batere atau Accumulator
Batere atau akumulator adalah sebuah sel listrik dimana didalamnya berlangsung proses elektrokimia yang reversibel (dapat berbalikan) dengan efisiensinya yang tinggi. 
 
Yang dimaksud dengan proses elektrokimia reversibel, adalah didalam batere dapat berlangsung proses pengubahan kimia menjadi tenaga listrik (proses pengosongan), dan sebaliknya dari tenaga listrik menjadi tenaga kimia ( pengisian kembali dengan cara regenerasi dari elektroda-elektroda yang dipakai, yaitu dengan melewatkan arus listrik dalam arah ( polaritas ) yang berlawanan didalam sel.

Tiap sel batere ini terdiri dari dua macam elektroda yang berlainan, yaitu elektroda positif dan elektroda negatif yang dicelupkan dalam suatu larutan kimia.

Monday, 20 May 2013

Rumus Daya Listrik

Rumus Daya Listrik

Daya listrik, seperti daya mekanik, dilambangkan oleh huruf P dalam persamaan listrik. Pada rangkaian arus DC, daya listrik sesaat dihitung menggunakan Hukum Joule, sesuai nama fisikawan Britania James Joule, yang pertama kali menunjukkan bahwa energi listrik dapat berubah menjadi energi mekanik, dan sebaliknya.

P= VI

Dimana
P adalah daya (watt atau W)
I adalah arus (ampere atau A)
V adalah perbedaan potensial (volt atau V)

Rumus Daya Listrik Arus Bolak Balik

Perumusan Daya Listrik Arus Bolak Balik

Dalam sistem listrik AC/Arus Bolak-Balik ada tiga jenis daya yang dikenal, khususnya untuk beban yang memiliki impedansi (Z), yaitu:
• Daya semu (S, VA, Volt Amper)
• Daya aktif (P, W, Watt)
• Daya reaktif (Q, VAR, Volt Amper Reaktif)

Untuk rangkaian listrik AC, bentuk gelombang tegangan dan arus sinusoida, besarnya daya setiap saat tidak sama. Maka daya yang merupakan daya rata-rata diukur dengan satuan Watt,Daya ini membentuk energi aktif persatuan waktu dan dapat diukur dengan kwh meter dan juga merupakan daya nyata atau daya aktif (daya poros, daya yang sebenarnya) yang digunakan oleh beban untuk melakukan tugas tertentu.

Sedangkan daya semu dinyatakan dengan satuan Volt-Ampere (disingkat, VA), menyatakan kapasitas peralatan listrik, seperti yang tertera pada peralatan generator dan transformator. Pada suatu instalasi, khususnya dipabrik/industri juga terdapat beban tertentu seperti motor listrik, yang memerlukan bentuk lain dari daya, yaitu daya reaktif (VAR) untuk membuat medan magnet atau dengan kata lain daya reaktif adalah daya yang terpakai sebagai energi pembangkitan flux magnetik sehingga timbul magnetisasi dan daya ini dikembalikan ke sistem karena efek induksi elektromagnetik itu sendiri, sehingga daya ini sebenarnya merupakan beban (kebutuhan) pada suatu sistim tenaga listrik.

Pada sistem arus bolak-balik, daya listrik tidak sesederhana pada sistem arus searah. Pada arus bolak-balik terdapat tiga jenis daya, yaitu daya semu, daya aktiv, dan daya reaktif, secara matematis

S = P +jQ 

Dimana daya semu(S) merupakan hasil penjumlahan daya aktiv (P) dengan daya reaktif (jQ) secara vektoris. Daya semu merupakan hasil perkalian langsung antara tegangan kerja dengan Arus konsumsi peralatan listrik yang terpasang S = V x i 

Keuntungan Perbaikan Faktor Daya dengan Penambahan Kapasitor

Keuntungan Perbaikan Faktor Daya dengan Penambahan Kapasitor

1. Bagi Konsumen, khususnya perusahaan atau industri: 
• Diperlukan hanya sekali investasi untuk pembelian dan pemasangan kapasitor dan tidak ada biaya terus menerus. 
• Mengurangi biaya listrik bagi perusahaan, sebab:
(a) daya reaktif (kVAR) tidak lagi dipasok oleh perusahaan utilitas sehingga kebutuhan total(kVA) berkurang dan (b) nilai denda yang dibayar jika beroperasi pada faktor daya rendah dapat dihindarkan. 
• Mengurangi kehilangan distribusi (kWh) dalam jaringan/instalasi pabrik. 
• Tingkat tegangan pada beban akhir meningkat sehingga meningkatkan kinerja motor. 

2. Bagi utilitas pemasok listrik 
• Komponen reaktif pada jaringan dan arus total pada sistim ujung akhir berkurang.
• Kehilangan daya I kwadrat R dalam sistim berkurang karena penurunan arus.
• Kemampuan kapasitas jaringan distribusi listrik meningkat, mengurangi kebutuhan untuk memasang kapasitas tambahan.

Komponen Utama Panel Kapasitor

Komponen-komponen utama yang terdapat pada panel kapasitor antara lain:

1. Main switch / load Break switch
Main switch ini sebagai peralatan kontrol dan isolasi jika ada pemeliharaan panel. Sedangkan untuk pengaman kabel / instalasi sudah tersedia disisi atasnya (dari) MDP.Mains switch atau lebih dikenal load break switch adalah peralatan pemutus dan penyambung yang sifatnya on load yakni dapat diputus dan disambung dalam keadaan berbeban, berbeda dengan on-off switch model knife yang hanya dioperasikan pada saat tidak berbeban .

2. Kapasitor Breaker.
Kapasitor Breaker digunkakan untuk mengamankan instalasi kabel dari breaker ke Kapasitor bank dan juga kapasitor itu sendiri. Kapasitas breaker  yang digunakan sebesar 1,5 kali dari arus nominal dengan I m = 10 x Ir. Untuk menghitung besarnya arus dapat digunakan rumus I n = Qc / 3 . VL

3. Magnetic Contactor
Magnetic contactor diperlukan sebagai Peralatan kontrol.Beban kapasitor mempunyai arus puncak yang tinggi , lebih tinggi dari beban motor. Untuk pemilihan magnetic contactor minimal 10 % lebih tinggi dari arus nominal ( pada AC 3 dengan beban induktif/kapasitif). Pemilihan magnetic dengan range ampere lebih tinggi akan lebih baik sehingga umur pemakaian magnetic contactor lebih lama.

4. Kapasitor Bank
Kapasitor bank adalah peralatan listrik yang mempunyai sifat kapasitif..yang akan berfungsi sebagai penyeimbang sifat induktif. Kapasitas kapasitor dari ukuran 5 KVar sampai 60 Kvar. Dari tegangan kerja 230 V sampai 525 Volt atau Kapasitor.

5. Reactive Power Regulator
Peralatan ini berfungsi untuk mengatur kerja kontaktor agar daya reaktif yang akan disupply ke jaringan/ system dapat bekerja sesuai kapasitas yang dibutuhkan. Dengan acuan pembacaan besaran arus dan tegangan pada sisi utama Breaker maka daya reaktif yang dibutuhkan dapat terbaca dan regulator inilah yang akan mengatur kapan dan berapa daya reaktif yang diperlukan. Peralatan ini mempunyai bermacam macam steps dari 6 steps , 12 steps sampai 18 steps.

Cara Pemasangan Instalasi Kapasitor

Cara Pemasangan Instalasi Kapasitor

Cara pemasangan instalasi kapasitor dapat dibagi menjadi 3 bagian yaitu :

1. Global compensation
Dengan metode ini kapasitor dipasang di induk panel ( MDP ). Arus yang turun dari pemasangan model ini hanya di penghantar antara panel MDP dan transformator. Sedangkan arus yang lewat setelah MDP tidak turun dengan demikian rugi akibat disipasi panas pada penghantar setelah MDP tidak terpengaruh. Terlebih instalasi tenaga dengan penghantar yang cukup panjang Delta Voltagenya masih cukup besar.

2. Sectoral Compensation
Dengan metoda ini kapasitor yang terdiri dari beberapa panel kapasitor dipasang dipanel SDP. Cara ini cocok diterapkan pada industri dengan kapasitas beban terpasang besar sampai ribuan kva dan terlebih jarak antara panel MDP dan SDP cukup berjauhan.

3. Individual Compensation
Dengan metoda ini kapasitor langsung dipasang pada masing masing beban khususnya yang mempunyai daya yang besar. Cara ini sebenarnya lebih efektif dan lebih baik dari segi teknisnya. Namun ada kekurangan nya yaitu harus menyediakan ruang atau tempat khusus untuk meletakkan kapasitor tersebut sehingga mengurangi nilai estetika. Disamping itu jika mesin yang dipasang sampai ratusan buah berarti total cost yang di perlukan lebih besar dari metode diatas

Pengertian Faktor Daya

Pengertian Faktor Daya 


Faktor daya atau faktor kerja adalah perbandingan antara daya aktif (watt) dengan daya semu/daya total (VA), atau cosinus sudut antara daya aktif dan daya semu/daya total (lihat gambar 1). Daya reaktif yang tinggi akan meningkatkan sudut ini dan sebagai hasilnya faktor daya akan menjadi lebih rendah. Faktor daya selalu lebih kecil atau sama dengan satu.

Secara teoritis, jika seluruh beban daya yang dipasok oleh perusahaan listrik memiliki faktor daya satu, maka daya maksimum yang ditransfer setara dengan kapasitas sistim pendistribusian. Sehingga, dengan beban yang terinduksi dan jika faktor daya berkisar dari 0,2 hingga 0,5, maka kapasitas jaringan distribusi listrik menjadi tertekan. Jadi, daya reaktif (VAR) harus serendah mungkin untuk keluaran kW yang sama dalam rangka meminimalkan kebutuhan daya total (VA).


Faktor Daya / Faktor kerja menggambarkan sudut phasa antara daya aktif dan daya semu. Faktor daya yang rendah merugikan karena mengakibatkan arus beban tinggi. Perbaikan faktor daya ini menggunakan kapasitor.

Kapasitor untuk Memperbaiki Faktor Daya Faktor daya dapat diperbaiki dengan memasang kapasitor 
pengkoreksi faktor daya pada sistim distribusi listrik/instalasi listrik di pabrik/industri. Kapasitor bertindak sebagai pembangkit daya reaktif dan oleh karenanya akan mengurangi jumlah daya reaktif, juga daya semu yang dihasilkan oleh bagian utilitas.

Sistem Pengapian Kondensator

Sistem Pengapian Kondensator

Sistem pengapian kondensator (kapasitor) atau CDI (Capacitor Discharge Ignition) merupakan salah satu jenis sistem pengapian pada kendaraan bermotor yang memanfaatkan arus pengosongan muatan (discharge current) dari kondensator, guna mencatudaya Kumparan pengapian (ignition coil).

Pada Sistem pengapian magneto terdapat beberapa kekurangan, yaitu:
1. Kumparan pengapian yang dipakai haruslah mempunyai nilai Induktansi yang besar, sehingga unjuk kerjanya di putaran tinggi mesin kurang memuaskan.
2. Bentuk fisik kumparan pengapian yang dipakai relatif besar.
3. Pemakaian kontak pemutus (breaker contact) menuntut perawatan dan penggantian komponen tersendiri.
4. Membutuhkan Pencatu daya yang mempunyai keluaran dengan Beda potensial listrik yang relatif rendah dan Kuat arus listrik yang relatif besar. Hal ini menuntut pemakaian komponen penghubung yang mempunyai nilai Resistansi serendah mungkin.

Walaupun pada nantinya dikembangkan Sistem pengapian transistor atau TSI (Transistorized Switching Ignition) atau TCI (TransistorControlled Ignition) yang menggunakan transistor untuk menggantikan kontak pemutus, perlahan-lahan kurang diminati seiring dengan kemajuan teknologi.

Awalnya sebuah pencatu daya akan mengisi muatan pada kondensator dalam bentuk Arus listrik searah sampai mencapai beberapa ratus volt. Selanjutnya sebuah pemicu akan diaktifkan untuk menghentikan proses pengisian muatan kondensator, sekaligus memulai proses pengosongan muatan kondensator untuk mencatudaya kumparan pengapian melalui sebuah Saklar elektronik. Karena bekerja dengan secara elektronik, sebagian besar komponennya merupakan komponen-komponen elektronik yang ditempatkan pada Papan rangkaian tercetak atau Printed Circuit Board (PCB), lalu dibungkus dengan bahan khusus agar terlindungi dari kotoran, uap, cairan maupun panas. 

Banyak orang yang menyebutnya modul CDI (CDI module), kotak CDI (CDI box), atau "CDI" saja.

Berdasarkan pencatu dayanya, sistem pengapian CDI terbagi menjadi dua jenis, yaitu: Sistem pengapian CDI AC yang merupakan dasar dari sistem pengapian CDI, dan menggunakan pencatu daya dari sumber Arus listrik bolak-balik (dinamo AC/alternator). Sistem pengapian CDI DC yang menggunakan pencatu daya dari sumber arus listrik searah (misalnya dinamo DC, Batere, maupun Aki). Ada banyak ragam modul CDI dibuat, pada dasarnya harus memenuhi kebutuhan yang diminta kumparan pengapian dan secara tidak langsung harus menunjang pembakaran seoptimal mungkin, dengan cara mengatur besarnya arus, tegangan dan durasi dari proses pengisian dan pengosongan muatan kondensator. Hal ini menentukan besarnya pasokan daya untuk kumparan pengapian dan juga Pewaktuan pengapian (ignition timing).

Pengertian Arus listrik

Pengertian Arus Listrik

Arus listrik adalah banyaknya muatan listrik yang mengalir tiap satuan waktu. Muatan listrik bisa mengalir melalui kabel atau penghantar listrik lainnya.

Pada zaman dulu, Arus konvensional didefinisikan sebagai aliran muatan positif, sekalipun kita sekarang tahu bahwa arus listrik itu dihasilkan dari aliran electron yang bermuatan negatif ke arah yang sebaliknya. Satuan SI untuk arus listrik adalah ampere (A).

Teori Daya Listrik

Teori Daya Listrik

Daya listrik didefinisikan sebagai laju hantaran energi listrik dalam rangkaian listrik. Satuan SI daya listrik adalah watt. Arus listrik yang mengalir dalam rangkaian dengan hambatan listrik menimbulkan kerja. Peranti mengkonversi kerja ini ke dalam berbagai bentuk yang berguna, seperti panas (seperti pada pemanas listrik), cahaya (seperti pada bola lampu), energi kinetik (motor listrik), dan suara (loudspeaker). Listrik dapat diperoleh dari pembangkit listrik atau penyimpan energi seperti baterai.

Listrik Arus bolak-balik (listrik AC -- alternating current) adalah arus listrik dimana besarnya dan arahnya arus berubah-ubah secara bolak-balik. Berbeda dengan listrik arus searah dimana arah arus yang mengalir tidak berubahubah dengan waktu. Bentuk gelombang dari listrik arus bolak-balik biasanya berbentuk gelombang sinusoida, karena ini yang memungkinkan pengaliran energi yang paling efisien. Namun dalam aplikasi-aplikasi spesifik yang lain, bentuk gelombang lain pun dapat digunakan, misalnya bentuk gelombang segitiga (triangular wave) atau bentuk gelombang segi empat (square wave).

Secara umum, listrik bolak-balik berarti penyaluran listrik dari sumbernya (misalnya PLN) ke kantor-kantor atau rumah-rumah penduduk. Namun ada pula contoh lain seperti sinyal-sinyal radio atau audio yang disalurkan melalui kabel, yang juga merupakan listrik arus bolak-balik. Di dalam aplikasiaplikasi ini, tujuan utama yang paling penting adalah pengambilan informasi yang termodulasi atau terkode di dalam sinyal arus bolak-balik tersebut.